Live Museum — Museum of Computer Science
Escola Técnica Superior d’Enginyeria Informatica®
Universitat Politécnica de Valéncia?
RETROCOMPUTING WORKSHOP

Jorge Gonzélez jgonzalez@dsic.upv.es

Have you ever heard about 8bit computers?
And about Golden Age of Spanish Software?

We are certain that this experience will enrich your perspective as modern computing user, we
assure you that you will enjoy it, you may be for a while in the shoes of a BASIC programmer
from 80s-90s decade.

Of course, after this workshop you will be able to answer the questions given above.

1. Introduction

The Live Museum’s classroom consists of several Amstrad CPC from the 80s, more precisely,
some 464 and 6128 models. In our context, the difference between these two types of CPC is
absolutely obvious: while 464 have got a cassette player built in, 6128 includes a built-in 3" disk
drive instead.

Even though there are both Spanish and English CPC versions, the essential difference can be
found in keyboard configuration and the name of some keys. Furthermore, the distinction between
a national system and an international one is completely irrelevant.

Finally, comparing again both CPC versions, we could distinguish between computer equipment
supplied by its own monitor (colour monitor or green screen), but also computers with an external
supply as TV, thus, an external power source is needed. This is an important feature to know how
starting up the system and shutting it down.

2. Turning the computer Off/On

Different features:

= CPC Amstrad Equipment with Amstrad monitor (colour or green screen)

e Turn it ON/OFF directly from the monitor. Usually, the computer switch should
be in the ON position. So, turning ON/OFF the monitor will be enough to turn
on the whole computer. If it does not work maybe the computer switch ON/OFF
is in the OFF position. In this case move it in order to turn ON the computer.

! Higher Technical School of Computer Engineering
2 polytechnic University of Valencia

mailto:jgonzalez@dsic.upv.es

= CPC Amstrad Equipment with TV. According to their external power supply:
e Amstrad power supply. Video Output is tuned by RF onto TV channel 0.
1. Turn on the TV. By default, TV goes automatically to channel 0. If it does
not, then switch on channel 0.
2. Turn on the computer by means of its power switch.
3. Separately, turn off both the computer and the TV.

e Generic power supply. Audio and video outputs are connected via SCART.
1. Turnon the TV. External input signal is not automatically detected.
2. Switch TV program to SCART input.
3. Turn on the computer by means of its power switch.
4. Separately, turn off both the computer and the TV.

Finally, in order to reset the computer equipment, the keyboard combination below could work:
CONTROL/CTRL+MAYS/SHIFT+Esc. If it does not work, you can use the computer switch.

3. OK, the computer is working so... what should we do next?

First of all, notice how quick these computers start working. It is an instant-on, ready to
receive orders, nothing to do with nowadays computers, even mobile phones or tablets take more
time to start up!

Those yellow letters on a blue background (if your monitor is not a monochromatic one) are a
welcome message loaded from ROM (read-only memory). For datacorders, or CPC464s, text is
a bit different, mainly because they are 64K of RAM and 1.0 of BASIC version.

Amnstrad 128K Microcomputer Cudd

21985 Amstrad Consumer Electronics 1c
and Locomotive Software Lgd.

BASIC 1.1
Ready
L]

Ready message at the end indicates that the system is already available to receive commands
from the keyboard.

3.1. Interpreter of BASIC

The interpreter of BASIC is a software stored in ROM, and it is executed immediately after
you start the computer, the message above is part of this software. The square shaped cursor
appears below the Ready message, any text typed next will be in the position of the cursor on the
screen, and you can send any order to the system finishing by means of the keys INTRO,
ENTER or RETURN.

Try on now to write PRINT ‘Hello World’ on the interpreter of BASIC and press INTRO

You just ran the command PRINT, which displays on the screen the message ‘Hello World’
indicated below, its execution is immediate due to the fact that it is an interpreter. As you can see,
when you press INTRO, text ‘Hello World’ is displayed on the screen, after this text again the
word Ready encouraging us to execute the next order.

Amstrad 128K Microcomputer Cu3d

21985 Amstrad Consumer Electromics 1c
and Locomotive Softuware Lgd.

"Hello Horld"™
d

Interpreter immediately responds to the order we give to the system, in this way we can always
see the behavior of the order at the moment. Nevertheless, if we want something bigger it is not
very useful, in other words: if we want to supply the computer with a major complexity behavior,
what we need is creating a program, an execution routine which the computer has to follow step
by step, in sequence and unambiguously.

The infrastructure required for software development is standard in BASIC. For that purpose, you
have to write the order you want preceded by a number.

Now write 10 PRINT ‘Hello World’ in the BASIC interpreter and press INTRO

Nothing has happened here, right? The cursor just moved with a line break, as in every text editor.
In fact, not even Ready message appeared, although the system is as ready as it was before. What
happened is that this order has been incorporated to the user program, you can access to it writing
list (and remember pressing INTRO at the end) in the BASIC interpreter, and you can run it as
many times as you like through the run command of BASIC.

Write LIST in the Basic interpreter and press INTRO; then write command RUN

Amstrad 128K Microcomputer (o3

21985 Amstrad Consumer Electronics l1c
and Locomotive S5oftware LEd.

BASIC 1.1

Read
FPRIHN "Hello Horxrld™
Hello Horld

Readﬂ
18 PRINT "Hello Hox 14"

list

18 PRIHNT "Hello Horld"™
Ready

™uv

Hello Horld

Ready

™uv

Hello Horld

ﬁeadg

A program is a numbered sequence of BASIC instructions which are executed in order. Why the
first line of our program have been numbered with 10 instead of 1? Easy, a program is created
little by little and it has variable features over time, so once a part is written, maybe you would
need adding a new code line, for instance, at the very beginning. If line 1 is already taken, the
only way to do that is by renumbering every single line. To avoid this problem, lines are usually
numbered in groups of ten, in order to leave room among them for adding new instructions later.

3.2.BASIC Programs
Now write the program below:

10 REM Even: CLS

20 INPUT “Give me a number: ”; N
30 R=N MOD 2

40 IF R=0 THEN PRINT “Tt is even”
50 GOTO 20

When you have finished, try to execute it by means of the BASIC command run. If you want to
edit any line, for instance fixing a mistake, just write edit, press space bar, and then write the
number of the line you want to edit. This process permits you editing the content of the line you
indicated before.

e. g. Write EDIT 10 in the BASIC interpreter (then press INTRO) and now edit line 10

Now, we are going to explain you a bit more about the previous program. First of all, you should
know that in BASIC only 1 command per program line is usual. This feature makes easier its own
reading, maintenance and sustainable development. However, BASIC’s syntax permits to
incorporate several instructions inside one program line. In that way it behaves as if they were in
different lines, in other words, these commands are executed in order, from left to right, and the

syntax of BASIC demands that the punctuation mark : has to be the dividing element between
instructions. In fact, line 10 from previous program contains two instructions (REM and CLS).
The REM command of BASIC makes possible introducing a comment in order to help with the
reading of the program, which in that case, it is only being used to add a title. The REM command
does not imply execution; it is only a comment inside the program. On the other side, CLS (clear
screen) just has the task of clearing the screen.

Edit the program leaving only 1 instruction per line (leave CLS on new line 15)

Line 20 (INPUT command) allows asking the user (text surrounded with quotation marks),
whose answer will be saved in execution time inside the variable named N2. Notice the symbol ;
to separate the user question from the variable that its answer will have.

Then, at line 30, the introduced number (remember, variable N) is divided by 2 with the MOD
command, the rest of the division will be calculated after its execution. The result will be saved
in the variable R.

Eventually, in line 40 you indicate the system to take into account the content of variable R. If
the content of R is 0 a message is displayed. On the contrary, if R contains a different value (not
0), then you do not have to do anything.

In line 50, at the end of the program (GOTO), the order becomes disrupted forcing BASIC to
make a gap, going back to the indicated line. In this case, GOTO 20 command avoids the program
ending in a regular way, so every time execution arrives to line 50 it goes back to line 20 asking
and answering the user again and again.

To stop the virtually endless execution of the program, press Esc at least twice

There are more elegant ways of designing loops (code section repeated). Please, now write next
program, which uses the FOR instruction of BASIC:

Before, write NEW in the BASIC interpreter in order to delete the previous program

10 REM Example

20 CLS

30 INPUT “Give me N: s N
40 FORI=1TON

50 PRINT I, SQR(I)

60 NEXT I

As you can imagine, the user puts a value of N to the system’s question, and there is a loop then
(lines 40-60) defined as a counter from 1 to N value, so in every single iteration the variable 1 will

3 A variable is like a box used to store only one datum (Section 3.2.5)

take a different value from the counter, for that reason the screen will display the list of square
roots of the integers from 1 to N.

3.2.1. Character set

The character set of BASIC is a set of letters, numbers and symbols you can use by means of the
keyboard or defined functions for text management. If you want to see all the printable character
set of Amstrad’s BASIC, just write the program below (you do first NEW to clear previous
program):

10 FOR 1=32 TO 255
20 PRINT CHR$(D);
30 NEXTI

b B

Y& *()ns , - . /8123 89:;<(=)7FABCDEFG

NOPQRSTUUNXYZ[“abodef hldklnno
2) s o n.g.i kT

24 (’K‘! ibe \pttc;-()‘xuﬁtﬂ

L SN eVeOe

o
p 8
(%)
5]
o
-
U
'
1 ~
J
b
|
e

Bxo™NTx

The Amstrad’s character set uses only 1 byte (8 bits) to manage 28 =256 characters, which are
numbered (like almost everything in computer science) starting from 0, that is, from 0 to 255. The
program shows almost every character of BASIC but the first 32 which are checking characters.
Those ones, due to their nature, are not able to be printed through the monitor. Symbol ; at the
end of line 20 is there to avoid the line break after printing each character.

3.2.2. The man who walks

The screen is in 1 mode by default, 40 columns and 25 lines, all of them numbered in increasing
order, starting from 1, and from the upper-left corner. You can use the command LOCATE to
place the cursor on the desired coordinate. Its syntax is LOCATE, N° COLUMN, N°ROW, as
shown below:

10 CLS

20 FOR X=1 TO 40
30 LOCATE X, 20

40 PRINT CHR$(250)
50 NEXT X

60 GOTO 10

FEREFRRRRERRER AR ERR AR R AR RERRREES

Edit now line 40 by means of the EDIT command and change it for the text below:
40 PRINT “”; CHR$(250)

What happens next? Could you explain the reason why it gives you a false sense of movement?
Notice how line 40 looks like, we keep painting the walker, but before that, we put a blank
space in order to overwrite the walker from the previous iteration, thus erasing the walker gives
you this sense of movement.

3.2.3. Graphics

In addition, there is a graphic mode in the screen where resolution is 640x400 pixels. Unlike text
mode, the beginning of coordinates is located in the lower-left corner. Now, write the following
program to draw a rectangle, framing the screen to 10 pixels:

10 CLS

20 PLOT 10,10

30 DRAW 10,390
40 DRAW 630,390
50 DRAW 630,10
60 DRAW 10,10

It is also possible nesting a loop inside one another. Thus, a loop drawing a circle could be inside
one another which will vary its radius within a range in every single iteration.

Now, type the following program to draw concentric circles on the center of the screen:

10 CLS

20 DEG

30 FOR R=50 TO 200 STEP 50
40 ORIGIN 320,200

50 FOR A=1 TO 360

60 PLOT R*COS(A),R*SIN(A)
70 NEXT A

80 NEXT R

3.2.4. Sound

An integrated speaker is standard on Amstrad CPC systems, even though they also have an
audio output by means of a Mini Jack connector, which can serve to bring sound to the TV
speakers via Scart.

The BASIC command to produce sound is SOUND, describing channel and pitch period. As an
optional feature you can add length, volume, surrounding pitch and volume, and period of noise.

There are three sound channels (1, 2 and 4), that is what permits simultaneous sounds, as well as
the ability of sending out the same musical note through several sound channels at the same
time. For that, we have to calculate the sum of the channels we are going to use, and put the
result in the SOUND order, so if we want to play the sound through e.g. both channel 1 and 4
we will put 5, or if we want to hear it through all the channels at time, we will put 7 (1+2+4=7).
On the other hand, we can specify the musical note we want to hear through its pitch period,
which is encoded as follows (notes in an intermediate scale from 8 available in Amstrad CPC):

Pitch Period Musical Note

478 DO

426 RE

379 Ml

358 FA

319 SOL
284 LA

253 Si

So, these are instructions if you would like to play the note DO on channel 1: SOUND 1, 478.
The length of the sound is 0.2 seconds by default, almost unnoticeable. If you want to vary the
length, you could add a third parameter to SOUND (measured by hundredths of a second).
Next parameter would be the volume level (an integer between 0, silence, and 7, max.). Now,
type this command of BASIC to hear the note DO, at a medium level volume during 2 seconds:

SOUND 1, 478, 200, 4

Try to create a program with a melody you already know, or if you do not, write the one provided
below (even if you do not understand all the instructions), and try to guess what it sounds like.

10 tempo=2.5

20 RESTORE 90

30 FOR x=1 TO 37

40 READ pitch, length

50 freq=440*(21(0+ ((pitch-10)/12)))

60 pitchnum=ROUND (125000/freq)

70 SOUND 1,pitchnum,length*tempo,7

80 NEXT

90 DATA 27,10,29,10,25,10,22,20,24,10,20,20

100 DATA 15,10,17,10,13,10,10,20,12,10,8,20

110 DATA 3,10,5,10,1,10,-2,20,0,10,-2,10,-3,10,-4,40

120 DATA 3,10,4,10,5,10,13,20,5,10,13,20,5,10,13,40

130 DATA 13,10,15,10,17,10,13,10,15,10,17,20,12,10,15,20,13,40
3.2.5. Variables

Variables are an essential part of development in all BASIC programs, as well as in any other
programming language. Variables are like boxes where we can store only one item, so you can
use their content to execute any operation later. For that, you have to identify them with a name
or tag which you can identify without any ambiguity. The valid names start with a letter
followed by more letters or numbers (or some symbols as well, such as the underlined symbol),
without blank spaces, international characters or punctuation marks.

10X=2
20 PRINT “Variable X contains: “; X

Immutability is one of the main features of variables in programming, in other words, if you do
not overwrite a different information, the content of the variable keeps the same value
indefinitely.

30X=5

40 PRINT “Now the variable X contains: “ X

If you want the user to enter a value for the variable, use command INPUT:

10 INPUT X
20 PRINT “Variable X contains: “ X
30 PRINT “Its square is: “; X*X

Command INPUT will display a question mark to inform the user that the system is waiting for
a piece of information. For instance, if the user enters 3, on the screen you will see:

73
Variable X contains: 3
Its square is: 9

Command INPUT enables you to include text before the question mark:
Edit line 10 of your programme: 10 INPUT “WHAT NUMBER YOU WANT TO SQUARE”; X

Another property of variables in any programming language is their data type, that is to say,
which type of information they can work with, so storing it. In general, variables behave like
boxes (but a particular kind of), so their content depends on the data type they were defined to,
in the same way a shoebox only serves to store shoes (theoretically).

As they have been used until now, BASIC variables define boxes containing real numbers, but
in programming there is another, very usual, data type, strings. It consists in a sequence of
characters we use to write messages. In order to define a text variable, at odds with its definition
as numerical type, you only have to use an identifier which must end with character $:

10 INPUT “Enter your name: “; NAMES$
20 SENTENCES$ = “HELLO “+ NAME$
30 PRINT SENTENCE$

Notice that bracketed delimiters are used with string literals, avoiding a potential syntax error
when running the BASIC program, since otherwise string literals are interpreted as variables.
You can also observe how to concatenate two strings by means of symbol + in line 20.

3.2.6. Suggested programs
1. Build a program which requests user data:

= User name
= User year of birth
= Current year

Then the program will display a custom sentence for the user, saying hello by their names, and
indicating user’s current age (or the age they will reach the current year).

2. Broaden the previous exercise indicating the length of user’s name (function LEN (string)
returns length or number of characters of the string given between parentheses).

3. Write a programme which asks the user to write any 2 strings of characters, and then displays
on the screen which one has a larger number of characters (remember conditional instructions of
BASIC: IF condition THEN command).

4. Write a programme which asks the user to write any 3 strings of characters, and then displays
on the screen which one has a larger number of characters (first, you compare strings 1 and 2
and determine which one is larger than the other, then you compare the previous winner with
string 3, so the winner will be the largest one).

5. Write a programme which asks the user to write any N strings of characters, and then
displays on the screen which one has a larger number of characters (user is initially required to
provide N). Think how this exercise can be based on the previous one, in order to generalise the
procedure by using a FOR loop of repetition. For that, the best option is starting from an empty
string *“” (with O characters) as the first winner string, and then reading a new string in the loop,
comparing it with the current winner string to find out which one is larger than the other. The
result may be the winner being the same or that it has to be updated. Remember about
immutability of variables and conditionals of BASIC.

6. Change the previous program and calculate the average length of introduced strings. First of
all, calculate the summation of N string lengths, which is usually solved in programming
through accumulator variables, meaning, these variables are overwritten in each iteration of the
loop depending on its own old value. In summation cases, these variables are initialized with the
neutral value of the sum, V=0. Then, a new value D for the summation will be computed in
each iteration, so it will be added to the current content of the accumulator variable V,
producing a partial summation, then you save it in the same accumulator variable, V = V+D.

7. Create a Guess the number program. In the line 10 fix a variable to an integer among 1 to
100, a friend of yours will have to guess it with a maximum of 6 attempts. Your friend will
write a number on each turn, and the program will say if the secret number is bigger or smaller,
if it is the right number the game is over. Remember command GOTO N°. You can use the
well-known counter variables, which is a particular case of accumulators where D is always 1.
Anyway, probably your neighbour will have a different program, so... Learn as much as you
can from different solutions provided!

